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The conditions for the propagation of modulated waves on a system of two coupled discrete nonlinear LC
transmission lines with negative nonlinear resistance are examined, each line of the network containing a finite
number of cells. Our theoretical analysis shows that the telegrapher equations of the electrical transmission line
can be reduced to a set of two coupled discrete complex Ginzburg-Landau equations. Using the standard linear
stability analysis, we derive the expression for the growth rate of instability as a function of the wave numbers
and system parameters, then obtain regions of modulational instability. Using numerical simulations, we
examine the long-time dynamics of modulated waves in the line. This leads to the generation of nonlinear
modulated waves which have the shape of a soliton for the fast and low modes. The effects of dissipative
elements on the propagation are also shown. The analytical results are corroborated by numerical simulations.
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I. INTRODUCTION

Wave propagation in nonlinear periodic lattices is associ-
ated with a lot of exciting phenomena that have no counter-
part whatsoever in bulk media. Perhaps, the most intriguing
entities that can exist in such systems are discrete self-
localized states—better known as discrete solitons �1�. Over
the years, discrete solitons have been a topic of intense in-
vestigation in several branches of science such as atomic
chains �2�, with on-site cubic nonlinearities, molecular crys-
tals �3�, biophysical systems �4�, Bose-Einstein condensates
�5�, and electrical lattices �6,7�. In fact, nonlinear transmis-
sion lines �NLTLs� are very convenient tools to study wave
propagation in nonlinear dispersive media �8�. In particular,
they provide a useful way to check how the nonlinear exci-
tations behave inside the nonlinear medium and to model the
exotic properties of new systems �9�. These are the reasons
why, since the pioneering works by Hirota and Suzuki �10�
and Nagashima and Amagishi �11� on a single electrical lines
simulating the Toda lattice �12�, a growing interest has been
devoted to the use of NLTLs. As we said above, NLTLs have
the capacity to support solitons such as excitations �kinks,
pulses, envelope, bright, dark solitons, etc.� �6,13�. Solitons
are localized pulses that arise in many physical contexts
through a balance of nonlinearity and dispersion. Since the
1970s, various investigators have discovered the existence of
solitons in NLTLs, through both mathematical models and
physical experiments. An envelope soliton can be viewed as
a results of an instability that leads to a self-induced modu-
lation of the steady state produced by the interaction between
nonlinear and dispersive effects. It has been shown that the
system of equations governing the physics of the NLTL can
be reduced to the Korteweg–de Vries �KdV� equation, the

continuous and discrete nonlinear Schrödinger �NLS and
DNLS� equations �6,14�, the continuous and discrete com-
plex Ginzburg-Landau �CGL and DCGL� equations �7,15�,
and the continuous coupled nonlinear Schrödinger �CNLS�
equation �16�. All these equations admit modulational insta-
bility �MI� and the formation of envelope solitons, which
have been observed experimentally �6–16�.

There are only a few works that we know of which report
the study of solitons in the coupled NLTL. Kakutamni and
Yamasaki �17� have investigated theoretically and experi-
mentally the KdV solitons on a coupled LC transmission line
consisting of two nonlinear LC ladder lines connected by
identical intermediary capacitors and have shown that the
network admits two different modes �a fast mode and a slow
mode� in each direction of wave propagation. Next, an ex-
tension of these studies to envelope solitons was made by
Essimbi et al. �18�. Quite recently, Yemele and Kofane �18�
as well as Kengne et al. �16� modeled this coupled line by a
set of CNLS equations. The soliton propagation and interac-
tion on two-dimensional nonlinear transmission lines have
also been studied �see �19� and references therein�. However,
experiments and analytical studies on the basic coupled
NLTL show that whenever the network is excited by an elec-
trical wave, two modes of propagation �slow and fast modes�
are generated in each line and enter unavoidably into play
with the wave-coupling behavior, causing qualitatively dif-
ferent phenomena compared with the ordinary process of MI,
such as the annihilation of both modes. Periodic structures
have an even richer variety of properties when they are
dissipative—i.e., have gained and lost in the system. In par-
ticular, discrete analogs of the CGL equation have drawn
attention in the field of pattern formation in nonlinear
coupled oscillators �20�.

The most standard mechanism through which bright soli-
tons and solitary wave structures appears is through activa-
tion of the MI of plane waves. In this case, the continuous-
wave solution of the NLS equation or CGL equation
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becomes unstable toward the generation of a chain of bright
soliton. Therefore, it is useful to model the coupled NLTLs
by a system of two DCGL equations and, hence, present
carefully analytical and numerical investigations concerning
the nonlinear modulated waves, the possible free propagation
of envelope solitons on the two coupled NLTLs.

The structure of the paper is as follows. In Sec. II we
present the basic characteristics of the coupled NLTLs under
consideration. Then, we will focus on deriving the coupled
discrete complex Ginzburg-Landau �CDCGL� equation.
Based on the obtained CDCGL equation, we determined the
frequency domain where the network allows the propagation
of envelope solitons in Sec. III. Numerical investigations are
performed in Sec. IV in order to verify the validity of

theoretical predictions—namely, the MI phenomenon and the
propagation of solitonic waves. Finally, concluding remarks
are presented to Sec. V.

II. BASIC COUPLED NONLINEAR DISCRETE LC
TRANSMISSION LINES

The model used in this work consists of a nonlinear net-
work with two coupled nonlinear transmission lines. Each
line contains a finite number of cells which consist of two
elements: a linear inductor of inductance Lj in the series
branch and a nonlinear capacitor of capacitance Cj in the
shunt branch. This capacitor consists of a reverse-biased di-
ode with a differential capacitance function of the voltage Vjn

FIG. 1. Schematic representa-
tion of the electrical line.
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across the jnth capacitor. In order to take into account the
dissipation of the network, the conductances g1j and g2j are
connected in parallel with Lj and L0j, respectively. The con-
ductance g1j describes the dissipation in the inductor Lj,
while g2j accounts for the dissipation of the inductor L0j in

addition to the loss of the nonlinear capacitance Cj; the sub-
script j designates the line number and can take the values 1
and 2. The two lines are connected by an intermediary linear
capacitor C, as shown in Fig. 1. The following values of the
parameters are used for our study: L1=L2=220 �H and
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L01=L02=280 �H �6,14,15�. The nonlinearity is introduced
in the line by a varicap diode for which the capacitance var-
ies with the applied voltage. Denoting by Qnj�t� the nonlinear
electrical charge of the jnth cell and by Vjn�t� the corre-
sponding voltage, we assume that the charge has a voltage
dependence similar to the one of an electrical Toda lattice
�7,12�:

Qnj�t� = C0jA ln�1 +
Vjn

A
� , �1�

where A and C0j are constants. Negative nonlinear resis-
tances are defined by their nonlinear current-voltage charac-
teristics. They are made of operational amplifiers, transistors,
or multipliers. They were introduced recently in nonlinear
transmission lines for signal-processing applications, particu-
larly in noise removal on coherent information weakly vary-
ing in space �21� and on image and wave amplification
�22,23�. The corresponding conductance is given by

g2j = � − �Vjn. �2�

We focus now on the propagation of nonlinear waves
through the lattice. From Kirchhoff’s laws it is easy to show
that the propagation of waves in the network is governed by
the following equation:

�A + Vjn�
d2Vjn

dt2 − �dVjn

dt
�2

=
�0j

2

A
�A + Vjn�2�Vjn−1 − 2Vjn + Vjn+1�

+ 2�1
�0j

A
�A + Vjn�2�d�Vjn−1 − 2Vjn + Vjn+1�

dt
�

−
�0j

2

A
�A + Vjn�2Vjn − 2�2

�0j

A
�A + Vjn�2dVjn

dt

+
�

AC0j
�A + Vjn�2dVjn

2

dt

+
� j

A
�A + Vjn�2�d2V3−jn

dt2 −
d2Vjn

dt2 � . �3�

For the sake of convenience, the dimensionless �1, �2, and
� j are introduced, they are related to conductance g1, g2, and
C as g1 / C01 =2�0�1, g2 / C01 =2�0�2, and C / C0j =� j.

The linear properties of the network can be studied by
assuming a sinusoidal wave of the form

Vjn�t� = Vj exp�i�kn − �t�� + c.c., �4�

where k and � are the wave number and the angular fre-
quency, respectively, and “c.c.” stands for the complex con-
jugate. The dispersion relation of the line is obtained after
solving the following system:

�d11 d12

d21 d22
��V1

V2
� = �0

0
� , �5�

where the coefficients of the matrices are given in Appendix
A. Equation �5� leads to the following dispersion expression:

�l
2 =

− b + �− 1�l		

2a
, �6�

where the coefficients a, b, c, and 	 are defined in Appendix
A. Equation �6� explains that there are two elementary wave
�modes� which coexist on each line at the same frequency �,
but with different wave numbers. The mode corresponding to
l=2 has a higher group velocity compared with the group
velocity of the mode l=1: it is the fast mode. Accordingly,
the mode l=1 is called the slow mode. Figure 2 shows, for
different situations, the linear dispersion curves of these two
modes of propagation. When the two coupled lines have
identical linear characteristic parameters—i.e., �01=�02=�0,
�0=�01=�02, and �2=�1=�—the fast mode reduces to the
standard mode of propagation of an isolated single line with
the characteristic frequency
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�2
2 = �0

2 + 4�0
2 sin2� k

2
� , �7�

while the characteristic frequency of the slow mode reduces
to

�1
2 =

�0
2 + 4�0

2 sin2�k 
 2�
1 + 2�

. �8�

The amplitudes of the signal voltage propagating along the
two coupled lines are linearly dependent and satisfy the re-
lation V2

l =�V1
l , where l=1,2 and

�l = 1 +
1

�
�1 −

�0
2 + 4�0

2 sin2�k 
 2�
�l

2 � . �9�

The superscript l stands for the mode propagation. Hereafter,
we shall use this notation where the case l=1 stands for the
slow mode and the case l=2 corresponds to the fast mode. To
describe modulated waves in the network, we consider

waves with slow temporal variations of the envelope. We
look for a solution of Eq. �3� in the form

Vjn = �
 jn�T�e�−i�t� + �
 jn
� �T�e�i�t�, �10�

where � is a small parameter and T=�2t. Inserting this
relation into Eq. �3� and collecting solutions of order
(�n , exp�−i�t�), the following relation has been derived at
order (� , exp�−i�t�):


 jn��0j
2 + 2�0j

2 − �1 + � j��2� = �0j
2 �
 jn−1 + 
 jn+1� − � j�

2
3−jn.

�11�

At order ��2 ,1� we have

�0j
2 �
 jn−1

� + 
 jn+1
� − 2
 jn

� �
 jn
2 − � j�

2�
3−jn
� 
 jn

2 + 
3−jn

 jn
2�

= 2��0j
2 − �1 + � j���2��

 jn
2
 jn − �0j

2 �
 jn−1 + 
 jn+1 − 2
 jn�

�

 jn
2. �12�

The solution of order (�3 ,exp�−i�t�) is given by the follow-
ing equation:
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FIG. 5. Propagation of waves through the network for the slow mode in the absence of dissipative elements ��1=0,�2=0�. �a� For line
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− 2i�
 jnT +
2i�� j

1 + � j

3−jnT + � 3�2

A2�1 + � j�
+

4i�0j�

�1 + � j�A
�

�

 jn
2
 jn +
2i�0j�

�1 + � j�

���1��0j
2 + 2�0j

2 − �1 + � j��2� − �0j
2 ��2 + 2�1�

�0j
2 + 2�0j

2 − �1 + � j��2 �
��
 jn+1 + 
 jn−1�

= � 2i� j�0j�
3��2 + 2�1�

�1 + � j���0j
2 + 2�0j

2 − �1 + � j��2�
�
3−jn. �13�

Let us set 
 jn=� jn exp�
�0j

2 +2�0j
2 −�1+� j��2

�0j
2 �� and �=

�0j
2

2� T. The
previous equation hence yields

i� jn� + i� j�3−jn� + Pj�� jn−1 − 2� jn + � jn+1� + Qj
� jn
2� jn

= � j� jn + �3−j�3−jn, �14�

where the coefficients Pj = �Pjr+ iPji�, Qj = �Qjr+ iQji�, � j
= �� jr+ i� ji�, and � j = �� jr+ i� ji� are expressed in Appendix A
and depend on the wave number k �Fig. 3 presents the shape
of these coefficients�. This equation has a long history as a
generic amplitude equation derived asymptotically near the
onset of instabilities in fluid dynamical systems. The case
with complex coefficients was put forth in a general setting
by Newell and Whitehead �24� and DiPrima et al. �26� and
was applied by Stewartson and Stuart �25� to plane Poiseuille
flow. Equation �14�, which describes the evolution of a com-
plex value � jn=� jn�n ,��, is the coupled discrete complex
Ginzburg-Landau equation. Accordingly, Eq. �14� constitutes
two sets of two coupled DCGL equations corresponding to
the two different lines of the network. The study of physical
and mathematical aspects of coupled nonlinear equations is
of considerable interest as these equations arise in diverse
areas of science such as nonlinear optics, optical communi-
cation, biophysics, Bose-Einstein condensates, plasma phys-
ics, and electrical transmission lines. The single DCGL equa-
tion is known to play a ubiquitous role in science. These
DCGL lattices are quite often known to describe a number of
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physical systems such as Taylor and frustrated vortices in
hydrodynamics �27� and semiconductor laser arrays in optics
�28� as well as pulse propagation. Recently, Porsezian et al.
�29� investigated the MI of symmetric and asymmetric con-
tinuous solutions in a model of a laser based on a dual-core
nonlinear optical fiber based on the continuous cubic-quintic
CGL equation.

When the coefficients Pji, Qji, and � ji are equal to zero,
Eq. �14� is reduced to the CNLS equation. The CNLS equa-
tion has been used to describe motions and interactions of
more than one wave envelope in cases in which more than
first-order parameters are needed to specify the system. It can
be used to describe the interactions of solitons in a baroclinic
atmosphere �30,29�, the suppression of forward and back-
ward propagating modulated waves in a single electrical
transmission line �31�, and the evolution of two linear polar-
ization components in nonlinear birefringent optical fibers
�32�, to cite just a few.

As we just saw, interest in the dynamic of discrete sys-
tems comes from the diversity of their numerous applications
in physical and biological sciences. Through the present

study, we see that the small-amplitude pulses on systems of
coupled NLETL via constant capacitors are described by a
set of CDCGL equations. This system possesses a traveling-
wave solution that can be unstable under linear perturbations.

III. MODULATIONAL INSTABILITY STUDIES
OF THE CDCGL EQUATION

Modulational instability has time-honored history in non-
linear wave equations. Over the years, MI has been observed
in various physical settings, including hydrodynamics,
plasma physics, nonlinear optics, and quite recently in Bose-
Einstein condensates. In this section, we will produce char-
acteristics of the MI in the form of a typical dependence of
the instability growth rate on the wave numbers and system
parameters. Let us recall explicitly the CDCGL equations

i�1n� + i�1�2n� + �P1r + iP1i���1n−1 − 2�1n + �1n+1�

+ �Q1r + iQ1i�
�1n
2�1n

= ��1r + i�1i��1n + ��1r + i�1i��2n,
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FIG. 7. Propagation of waves through the network for the fast mode in the absence of dissipative elements ��1=0,�2=0�. �a� For line
1, cell 600. �b� For line 2, cell 600. �c� For line 1, cell 800. �d� For line 2, cell 800.

MODULATED WAVES AND PATTERN FORMATION IN … PHYSICAL REVIEW E 78, 016606 �2008�

016606-7



i�2n� + i�2�1n� + �P2r + iP2i���2n−1 − 2�2n + �2n+1�

+ �Q2r + iQ2i�
�2n
2�2n

= ��2r + i�2i��2n + ��2r + i�2i��1n. �15�

We look for plane-wave solutions in the form

� jn��� = � je
�i�qjn−�j���, j = 1,2. �16�

The linear coupling imposes the restrictions q1=q2=q and
�1=�2=�0. Inserting Eq. �16� into Eq. �15�, we obtain the
following expression describing implicitly the characteristics
of the continuous-wave solution: the real parts of this rela-
tion,

�0��1 + �1�2� = − 2P1r cos�q��1 − Q1r
�1
2�1 + �1�2,

�0��2�1 + �2� = − 2P2r cos�q��2 − Q2r
�2
2�2 + �2�1,

�17�

and the imaginary parts of this relation,

2P1i�1 cos�q� + Q1i
�1
2�1 = �1i�2,

2P2i�2 cos�q� + Q2i
�2
2�2 = �2i�1. �18�

Let us now consider a small perturbation around the station-
ary plane waves:

� jn��� = �� j + Bjn����e�i�qn−�0���, �19�

where Bjn is a complex function denoting the small pertur-
bation of the slowly varying modulated complex amplitude.
Substituting this relation into Eq. �15�, one obtains a linear-
ized equation for the perturbations Bjn:

iB1n� + P1��B1n−1 − 2B1n + B1n+1�cos�q�

+ i�B1n+1 − B1n−1�sin�q�� + ��1 − �1�0�
�2

�1
B1n

+ Q1
�1
2�B1n + B1n
� �

= − i�1B2n� + ��1 − �1�0�B2n,
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FIG. 8. Propagation of waves through the network for the fast mode in the presence of dissipative elements ��1=0.00461,�2=0.0�. �a�
For line 1, cell 600. �b� For line 2, cell 600. �c� For line 1, cell 800. �d� For line 2, cell 800.
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iB2n� + P2��B2n−1 − 2B2n + B2n+1�cos�q�

+ i�B2n+1 − B2n−1�sin�q�� + ��2 − �2�0�
�1

�2
B2n

+ Q2
�2
2�B2n + B2n
� �

= − i�2B1n� + ��2 − �2�0�B1n. �20�

Furthermore, we assume a general solution of the above-
mentioned system in the form

Bjn��� = aje
�i�Qn+���� + bj

�e�−i�Qn+�����, �21�

where Q and � are an arbitrary real wave number of the
perturbation and the corresponding propagation frequency,

respectively, which is complex in the general case, aj and bj

being perturbation amplitudes. Hence, substituting this per-
turbation into Eq. �20�, we arrive at a set of linear homoge-
neous equations for aj and bj. This set of homogeneous equa-
tions can be written in matrix form as

M � �a1,b1,a2,b2�T = 0, �22�

where M is a 4�4 matrix whose elements hpq, p ,q
=1,2 ,3 ,4, are given in Appendix B. The dispersion relation,
which determines � as a function of Q, q, and the parameter
system, including the MI gain �� Im���, is obtained from
the condition of the existence of nontrivial solutions of the
algebraic linear homogeneous system det�M�=0, which
amounts to a quartic equation for �. This matrix form can be
written as
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FIG. 9. Phase portrait of the low mode at cell 1000. �a� In the absence of dissipation, line 1. �b� Line 2. �c� In the presence of dissipation,
cell line 2. �d� Line 2.
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M =�
− � + m1 + im2 m3 + im4 − �1� + m5 + im6 0

m3 − im4 � + m1 − im2 0 �1� + m7 − im6

− �2� + m8 + im9 0 − � + m10 + im11 m12 + im13

0 �2� + m14 − im9 m12 − im13 � + m10 − im11


 . �23�

With the frequency in the form �=�r+ i�, one can note that
e−�� enters inside the amplitude of the perturbation. The
asymptotic behavior of the perturbation is related to the sign
of the constant �. So an instability may develop in the
coupled line if Im��� is negative. Thereafter, we solve the
condition of the existence of nontrivial solutions using a
MATLAB code and we only keep the values of the wave num-
bers q and Q, which give negative values of the growth rate
�� Im��� �20,33�. Figure 4 presents regions of MI in the
�q ,Q� plane for the fast mode �Fig. 4�a�� and slow mode
�Fig. 4�b��. One observes that regions of instability increase
slightly in the case of the slow mode.

IV. NUMERICAL RESULTS

According to the analytical calculations presented in Sec.
III, the stability of modulated plane waves is fulfilled when
the instability growth rate is positive. However, this stability
analysis has been obtained through Eq. �14�, which is only
an approximate description of the initial equation �3�. There-
fore, the linear stability analysis can only detect the onset of
instability, but it does not tell us anything about the behavior
of the system when the instability takes places. In order to
check the validity of the analytical predictions of MI pre-
sented in the previous sections, we have performed numeri-
cal simulations on the general equation �3� governing wave
propagation in the coupled NLTL. The parameters of the
lines are L1=L2=220 �H, L01=L02=280 �H, C01=C02
=400pF, �=1 /2, �=2�0�2, and g1 / C0 =2�0�1, � / C0
=2�0�2 with �1=0.00461 and �2=0 �6,14,15,18�. The
fourth-order Runge-Kutta scheme is used with a normalized
integration time step 	t=5�10−3. Similarly, the number of
cells is chosen so that we do not encounter the wave reflec-
tion at the end of the line. At the input of the lines, we apply
a slowly modulated signal:

Vj�t� = Vj0�1 + m0 cos�2�fmt��cos�2�fpt� , �24�

where Vj0 is the amplitude of the unperturbed plane wave
�carrier wave�, m0 designates the modulation rate, and fm is
the frequency of modulation. As a specific example, we use
the following values for the parameters: Vj0=1.5 V, fp
=1180 kHz, m0=0.01, and fm=16 kHz.

Figure 5 shows an example of waves propagating through
the network where the corresponding mode of propagation is
the slow mode in the absence of dissipation terms ��1=�2
=0�. This figure represents the signal voltage at different
cells: Fig. 5�a�, cell 800, and Fig. 5�c�, cell 1000, for line 1,
and Fig. 5�b�, cell 800, and Fig. 5�d�, cell 1000, for line 2.
We observe a synchronization between the waves through

the two lines at the same cell �Figs. 5�a� and 5�b�, then Figs.
5�c� and 5�d��. Now, we take into account dissipation on each
line ��1=0.00461 and �2=0.0�. We observe in Figs.
6�a�–6�d� that the initial nonlinear excitation is well modu-
lated. It is well known that a continuous-wave or quasicon-
tinuous radiation propagating in a nonlinear dispersive me-
dium may suffer instability with respect to weak periodic
modulations of the steady state and results in the breaking of
a continuous wave into a train of ultrashort pulses. The
above input signal voltage leads to a self-modulation of the
wave. It is a typical example of MI.

Figure 7 presents the behavior of waves through the line
when the propagation mode is the fast mode in the absence
of dissipation. Figures 7�a� and 7�c� account for cell 600,
while Figs. 7�b� and 7�d� represent the propagation of waves
at cell 800. As the time goes on and as the wave travels along
the electrical network, we observe that the propagation
seems to be chaotic on each line. The magnitude of the wave
decreases exponentially. We also observe a synchronization
between the waves for the two lines. But if we include
through the lines the dissipation terms, the result is depicted
in Fig. 8. The wave travels down the electrical network; the
continuous wave breaks into a pulse train. The solitonic ex-
citations of the pulse train have envelope functions with a
familiar shape of the theory of solitonlike objects. Each ele-
ment of the train has the shape of a solitonlike object. But in
contrast to solitons, they emerge as a solution of the time-
dependent classical equation of motion. An interesting phe-
nomenon can be also noted in Fig. 8. The wave displays
oscillating and breathing wave behavior. Indeed, it has been
shown in the past that the spontaneous creation of breathers
is associated with the MI of plane waves. In fact, the typical
occurrence of solitonlike pulses �hereafter we called them
solitons� produced by MI along the evolution of the waves is
due to the interplay between the nonlinearity and dispersion.
By comparison with Fig. 7, one can note that the magnitude
of the waves has drastically decreased due to the presence of
dissipative terms in the line. As we have seen, MI is a
symmetry-breaking instability so that a small perturbation on
top of a constant-amplitude background experiences expo-
nential growth and this leads to beam breakup in either space
or time. Since this disintegration typically occurs in the same
parameters region where bright solitons are observed, MI is
considered, to some extent, a precursor to soliton formation.
MI is then responsible for the formation of envelope solitons
in electrical transmission lines. MI also sets a fundamental
nonlinear limiting factor in the transmission of dense
wavelength-division multiplexed signals in long-distance
electrical links.

Coherent structures and chaotic states are well known as
two distinct states of nonlinear dissipative wave systems.
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However, these states sometimes occur and propagate to-
gether in some systems. This incoherent evolution of modu-
lated plane waves can be evidenced in the nonreproducibility
of experiments devoted to their propagation in the nonlinear
medium, as observed by Ablowitz et al. �34� in the context of
fluid dynamics—that is, considering modulated periodic
Stokes waves in deep water. For two different experiments
with initial identical signals generated by the wave maker,
the resulting temporal evolutions of the surface displacement
at a given position in the tank are graphed against each other
to produce a “phase plane” plot indicating the level of repro-
ducibility. In particular, if the two experiments can be con-
sidered to be reproducible near the wave maker, which cor-
responds to a 45° line in the phase plane, on the contrary, a
complex graph is obtained for more distant positions in the
tank. This complex graph traduces the nonreproduciblity of
both experiments and modulated periodic Stokes waves,
which is attributed to the development of a phase shift be-
tween the waves of the two experiments, this unavoidable
phase shift being a function of time. Here, we consider

modulated plane waves in a coupled NLTL. In the phase
plane plots, the evolution of the voltage is shown in Fig. 9
when the mode of propagation is the slow mode for cell 1000
�Figs. 9�a� and 9�b� in the absence of dissipation, while Figs.
9�c� and 9�d� depict the case where the dissipation is
present�. Figure 10 depicts the phase plane plot when the
mode of propagation is the fast mode. The graphs are ob-
tained for cell 800 �Figs. 10�a� and 10�b� in the absence of
dissipation, while Figs. 10�c� and 10�d� represent the system
when dissipation is taken into account�. The geometry of the
graph traduces the dynamics of nonlinear modulated waves,
from pseudocoherent to a chaotic state. The chaoticlike state
graph obtained here traduces the particular instability of
modulated waves described through the previous figures.
Furthermore, one can note that when the dissipation is
present in the system, this latter seems to be less chaotic and
the waves are also well decomposed into a train of pulses.
One can conclude that the presence of dissipation through
each line seems to reduce the chaoticlike behavior of the
coupled system.
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FIG. 10. Phase portrait of the fast mode at cell 800. �a� In the absence of dissipation, line 1. �b� Line 2. �c� In the presence of dissipation,
cell line 2. �d� Line 2.
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V. CONCLUSION

In this paper, we have investigated analytically and nu-
merically MI in a coupled NLTL. We have shown that the
dynamics of nonlinear waves in a coupled discrete nonlinear
electrical transmission line with negative nonlinear resis-
tance can be described by a set of coupled discrete complex
Ginzburg-Landau equations. Exploiting the Stokes wave
analysis, we built a typical dependence of MI gain on the
perturbation wave numbers and parameters of the system. By
solving the fourth-order polynomial obtained from the con-
dition of nontrivial solutions, we show regions of MI on the
�q ,Q� plane. Then, outcomes of the nonlinear development
of the MI predicted analytically were identified from direct
simulations of the underlying CDCGL equations. This was
most clearly identified for longer-time dynamical evolution
results that permit one to clearly identify the instability
through the formation of localized train of pulses. A stable
array of stationary pulses and an apparently turbulent �cha-
otic� state have been obtained during the propagation. How-
ever, there are still “stronger” signatures of the instability in
the unstable fast and slow modes. This work advocates the
use of the MI as an experimental tool to generate solitonic
trains in the NLTL. Our theoretical investigation and numeri-
cal findings clearly support the formation of such trains in
the context of the NLTL. The chaoticlike state of the line has
been presented. The influence of the dissipative elements on
the line has also been presented.
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APPENDIX A

The coefficients of Eq. �5� are

d11 = − ��1 + 1��2 + �01
2 + 4�01

2 sin2� k

2
�,

d12 = − �1�2, d21 = − �2�2,

d22 = − ��2 + 1��2 + �02
2 + 4�02

2 sin2� k

2
� . �A1�

Coefficients of the dispersion relation �6� are

� j =
C

C0j
, 2�0j�1 =

g1j

C0j
, 2�0j�2 =

�

C0j
, a = 1 + �1 + �2,

b = �1 + �1���02
2 + 4�02

2 sin2� k

2
�� + �1 + �2���01

2

+ 4�01
2 sin2� k

2
�� ,

c = ��01
2 + 4�01

2 sin2� k

2
����02

2 + 4�02
2 sin2� k

2
�� ,

	 = b2 − 4ac, �0j
2 =

1

L0jC0j
, �0j

2 =
1

LjC0j
. �A2�

Coefficients of the CDCGL equation �14� are

Qjr =
3�2

�1 + � j�A2�0j
2 , Qji =

4��

�1 + � j�A�0j
2 , Pjr = 1,

� jr = − 2Pjr, � ji = − 2Pji,

� jr =
� j�

2

�1 + � j���0j
2 + 2�0j

2 − �1 + � j��2�
,

Pji =
2�0j�

�1 + � j�
��1��0j

2 + 2�0j
2 − �1 + � j��2� − �0j

2 ��2 + 2�1�
�0j

2 + 2�0j
2 − �1 + � j��2 � ,

� ji =
2� j�

3�1

�1 + � j��0j��0j
2 + 2�0j

2 − �1 + � j��2�
. �A3�

APPENDIX B

The elements of the matrix �22� are

h11 = − � + m1 + im2, h12 = m3 + im4,

h13 = − �1� + m5 + im6,

h14 = 0, h21 = m3 − im4, h22 = � + m7 − im2, h23 = 0,

h24 = �1� + m8 − im6, h31 = − �2� + m9 + im10, h32 = 0,

h33 = − � + m11 + im12, h34 = m13 + im14, h41 = 0,

h42 = �2� + m15 − im10, h43 = m10 − im11,

h44 = � + m16 − im12,

m1 = �− 4P1r cos�q�sin2�Q

2
� − 2P1r sin�q�sin�Q� + ��1r�

�2

�1

+ Q1r
�1
2� ,

m2 = �− 4P1i cos�q�sin2�Q

2
� − 2P1i sin�q�sin�Q� + �1i

�2

�1

+ Q1i
�1
2� ,

m3 = Q1r
�1
2, m4 = Q1i
�1
2, m5 = − �1r, m6 = − �1i,

m7 = �− 4P1r cos�q�sin2�Q

2
� − 2P1r sin�q�sin�Q� + ��1r�

�2

�1

+ Q1r
�1
2� ,

m8 = − �1r, m9 = − �2r, m10 = − �2i,
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m11 = �− 4P2r cos�q�sin2�Q

2
� − 2P2r sin�q�sin�Q� + ��2r�

�1

�2

+ Q2r
�2
2� ,

m12 = �− 4P2i cos�q�sin2�Q

2
� − 2P2i sin�q�sin�Q� + �2i

�1

�2

+ Q2i
�2
2� ,

m13 = Q2r
�2
2, m14 = Q2i
�2
2, m15 = − �2r,

m16 = �− 4P2r cos�q�sin2�Q

2
� − 2P2r sin�q�sin�Q� + ��2r�

�1

�2

+ Q2r
�2
2� . �B1�
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